Annexins and Ca2+ handling in the heart.
نویسندگان
چکیده
Annexins are a family of 13 proteins known to bind phospholipids (PL) in a Ca(2+)-dependent way. They are ubiquitous proteins and share a similar structure characterized by a conserved C-terminal domain with Ca(2+) binding sites and a variable N-terminal domain. Depending on Ca(2+) concentration, they have been reported to participate in a variety of membrane-related events such as exocytosis, endocytosis, apoptosis and binding to cytoskeletal proteins. They have also been reported to regulate protein activities. This review will focus on annexins in the heart, and particularly on annexins A2, A5, A6 and A7. Annexin A2 has been found in endothelial cells and reported to play a central role in control of plasmin-mediated processes. Annexin A5 is mainly localized in cardiomyocytes. However, it could be relocated to interstitial tissue in ischemic and failing hearts or it could be externalized and exhibit a proapoptotic effect in cardiomyocytes. Annexin A6 is the most abundant annexin in the heart, and has been localized in various cell types including myocytes. Overexpression of annexin A6 has underlined physiological alterations in contractile mechanics leading to dilated cardiomyopathy, whereas knockout has been found to induce faster changes in Ca(2+) transient and increased contractility, suggesting a negative inotropic role for annexin A6. Annexin A7 is expressed in heart and skeletal muscle. In annexin A7 null mutant mice decreases in the force-frequency relationship were observed in adult cardiomyocytes, consistent with regulation of Ca(2+) handling. In conclusion, while annexin A2 was involved in regulation of fibrin homeostasis, alterations in expression and activity of annexins A5, A6 and A7 have been associated with regulation of Ca(2+) handling in the heart, but the target of each annexin has not yet been identified.
منابع مشابه
Immunolocalization of annexins IV, V and VI in the failing and non-failing human heart.
UNLABELLED The failing human heart is characterized by changes in the expression and function of proteins involved in intracellular Ca2+ cycling, resulting in altered Ca2+ transients and impaired contractile properties of cardiac muscle. The role of the cardiac annexins in this process remains unclear. Annexins may play a role in the regulation of Ca2+ pumps and exchangers on the sarcolemma, an...
متن کاملCharacterization of mammalian heart annexins with special reference to CaBP33 (annexin V).
Porcine heart was observed to express annexins V (CaBP33) and VI in large amounts, and annexins III and IV in much smaller amounts. Annexin V (CaBP33) in porcine heart was examined in detail by immunochemistry. Homogenization and further processing of heart in the presence of EGTA resulted in the recovery of annexin V (CaBP33) in the cytosolic fraction and in an EGTA-resistant, Triton X-100-sol...
متن کاملCharacterization of Ca2(+)-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins.
The annexins are a family of structurally similar, Ca2(+)-dependent, phospholipid-binding proteins. We compared six members of this family (calpactin I heavy chain, lipocortins I and III, endonexin II, p68 and protein II) to determine their phospholipid-binding specificities, as well as their ability to promote aggregation and fusion of phospholipid vesicles. The Ca2+ requirement for all of the...
متن کاملAnnexins: from structure to function.
Annexins are Ca2+ and phospholipid binding proteins forming an evolutionary conserved multigene family with members of the family being expressed throughout animal and plant kingdoms. Structurally, annexins are characterized by a highly alpha-helical and tightly packed protein core domain considered to represent a Ca2+-regulated membrane binding module. Many of the annexin cores have been cryst...
متن کاملEffect of divalent metal ions on annexin-mediated aggregation of asolectin liposomes.
Annexins belong to a family of Ca2+- and phospholipid-binding proteins that can mediate the aggregation of granules and vesicles in the presence of Ca2+. We have studied the effects of different divalent metal ions on annexin-mediated aggregation of liposomes using annexins isolated from rabbit liver and large unilamellar vesicles prepared from soybean asolectin II-S. In the course of these stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 65 4 شماره
صفحات -
تاریخ انتشار 2005